Phase field approach to dislocation evolution at large strains: Computational aspects
نویسندگان
چکیده
Computational aspects of the phase field simulations of dislocation nucleation and evolution are addressed. The complete system of equations for the coupled phase field approach to dislocation nucleation and evolution and nonlinear mechanics for large strains is formulated. Analytical solutions for a stationary and propagating single dislocation, dislocation velocity, core energy, and core width are found. Dislocation parameters for nickel are identified based on existing molecular dynamics simulations. In contrast to all previous efforts that are based on the spectral approach, finite element method (FEM) is utilized, which allowed us to treat large strain problems and nonperiodic boundary conditions. The single dislocation order parameter profile and the stationary distance between two neighboring dislocations at a semicoherent sharp austenite martensite interface are in perfect agreement with analytical expressions. The main focus is on proving that the new points of the developed theory can be confirmed in simulations, including possibility of obtaining the desired dislocation height for aligned and inclined dislocations, eliminating spurious stresses, resolving dislocation cores and interaction between cores of different dislocations. Mesh independence of the solutions is demonstrated and the effect of approximating finite element polynomials is analyzed, exhibiting possibility of significant numerical errors when special care is not taken of. Problems of nucleation and evolution of multiple dislocations along the single and multiple slip systems near martensitic lath, and along the sharp austenite martensite interface, the activity of dislocations with two different orientations in a nanograined material under shear and pressure, and the interaction between two intersecting dislocation systems are studied. Surfacemodified partial dislocation was revealed. These problems represent the first step in the future Email address: [email protected] (Valery I. Levitas) Preprint submitted to International Journal of Solids and Structures October 28, 2015
منابع مشابه
Phase field approach to interaction of phase transformations and plasticity at large strains
Thermodynamically consistent phase fi eld approach (PFA) for multivariant martensitic phase transformations (PTs) and twinning for large strains is developed [1, 2]. Thermodynamic potential in hyperspherical order parameters is introduced, which allowed us to describe each martensite-martensite (i.e., twin) interface with a single order parameter [3]. These theories are utilized for fi nite ele...
متن کاملInteraction of phase transformations and plasticity at the nanoscale: phase field approach
Phase field approach (PFA) to the interaction between phase transformations (PTs) and dislocations is developed at large strains as a nontrivial combination of our recent advanced PFAs to martensitic PTs and dislocation evolution. Finite element method (FEM) simulations are performed to solve the coupled phase-field and elasticity equations and are applied to study of the growth and arrest of m...
متن کاملAdvanced phase-field approach to dislocation evolution
The phase-field approach to dislocations is conceptually advanced. Large strain formulation is developed. A local thermodynamic potential eliminates stress dependence of the Burgers vector and reproduces the desired local stress-strain curve, as well as the desired, mesh-independent, dislocation height for any dislocation orientation. A gradient energy contains an additional term, which exclude...
متن کاملDisplacive phase transitions at large strains: phase-field theory and simulations.
The Landau potential for multivariant displacive phase transformations (PTs) is derived for the most general case of large rotations, elastic and transformational strains, as well as nonlinear and different elastic properties of phases. The method of repetitive superposition of large strains is extended for PTs and is utilized in the finite-element method approach for solution of corresponding ...
متن کامل